2-8
 Proportions and Similar Figures

Vocabulary

Review

Do the ratios in each pair form a proportion? Explain.

1. $\frac{2}{5}$ and $\frac{10}{25}$
2. $\frac{1}{3}$ and $\frac{30}{100}$
\qquad
\qquad

Vocabulary Builder

similar (adjective) SIM uh lur
Related Word: similarly (adverb)

Definition: Objects are similar if they are alike, but not necessarily identical.
Main Idea: In mathematics, similar figures have the same shape, but not necessarily the same size.

- Use Your Vocabulary

3. Explain how a lion and a giraffe are similar.

How is a lion like a giraffe?
\qquad
How is a lion different from a giraffe?
\qquad
4. Consider each pair of figures. Circle the figures that are similar.
\square

\square

The symbol \sim means "is similar to." In Problem 1 below, $\triangle A B C \sim \triangle D E F$.
In similar figures, the measures of corresponding angles are equal, and corresponding side lengths are in proportion. In Problem 1, the pairs of corresponding sides are $\overline{A B}$ and $\overline{D E}, \overline{A C}$ and $\overline{D F}$, and $\overline{B C}$ and $\overline{E F}$.

Problem 1 Finding the Length of a Side

Got It? In the diagram, $\triangle A B C \sim \triangle D E F$. What is $A C$?

5. Underline the correct word or words to complete the sentence.

Because the triangles are similar, the ratios of the corresponding sides are equal / not equal .
6. Use the diagram above. Circle the ratio that forms a proportion with $\frac{B C}{E F}$.

$\frac{A C}{D E}$	$\frac{A C}{E F}$	$\frac{A C}{D F}$	$\frac{A C}{A B}$

7. Use the ratios from Exercise 6 to write a proportion. Solve your proportion for $A C$.

Problem 2 Applying Similarity

Got lt? A man who is 6 ft tall is standing next to a flagpole. The shadow of the man is 3.5 ft and the shadow of the flagpole is 17.5 ft . What is the height of the flagpole?
8. Label the diagram. Let $h=$ the height of the flagpole.

9. Complete the reasoning model below.

Think	Write	
First I write a proportion to find the height, h, of the flagpole.	$6=\frac{h}{6}$	
Then I use the Cross Products Property.	- $h=6$.	
Then I simplify.	$3.5 h=$	
Now I divide each side by 3.5.		
And now I simplify.	$h=$	
Finally I write a sentence to answer the question.	The height of the flagpole is	ft .

Problem 3 Interpreting Scale Drawings

Got It? On a map the scale is $1 \mathrm{in} .: 110 \mathrm{mi}$. The distance from Jacksonville to Gainesville on the map is about 0.6 in . What is the actual distance from Jacksonville to Gainesville?
10. Let $x=$ \qquad .
11. Use the given information to write and solve a proportion.
12. The actual distance from Jacksonville to Gainesville is miles.

Problem 4 Using Scale Models

Got It? A scale model of a building is 6 in . tall. The scale of the model is
$1 \mathrm{in} .: 50 \mathrm{ft}$. How tall is the actual building?
13. Complete the equation in the model.

Define Let $x=$ the actual height of the building.

Write

14. Now write and solve a proportion.
15. The actual building is ft tall.

Lesson Check - Do you UNDERSTAND?

Reasoning Suppose $\triangle A B C \sim \triangle T U V$. Determine whether each pair of measures is equal.

the measures of $\angle A$ and $\angle T \quad$ the perimeters of the two triangles the ratios of the sides $\frac{B C}{U V}$ and $\frac{A C}{T V}$
Underline the correct word to complete each sentence.
16. In similar triangles, corresponding sides always have the same length / ratio .
17. In similar triangles, corresponding angles always have equal / unequal measures.

Use the triangles at the right. Write T for true or F for false.
18. The measures of $\angle A$ and $\angle T$ are equal.
19. The perimeters of the two triangles are equal.
20. The ratios $\frac{B C}{U V}$ and $\frac{A C}{T V}$ are equal.

Math Success

Check off the vocabulary words that you understand.
similar figures
scalescale drawingscale model
Rate how well you can use proportions to solve similar-figure problems.

